Related Topics

  Protection of Transformer  Equivalent Circuit diagram of single phase Transformer   Core type Transformer and Shell type Transformer  Transformer with winding Resistance and Magnetic Leakage  Transformer with winding Resistance but No Magnetic Leakage  Equivalent Resistance of single phase Transformer  Magnetic leakage of Single Phase Transformer  Oil Flow Indicator of the pump of Power Transformer  Silica Gel Breather of Transformer  Oil Pump of Transformer   Radiator of Transformer and working of Radiator  PRD of Transformer  MOG ( magnetic oil gauge ) of Transformer  Bushing of Transformer ( for H.V side and L.V side )  WTI and OTI of Transformer  Buchholz Relay of Transformer and Working of Buchholz Relay  Conservator tank of Transformer  What is a Power Transformer ?  Short Circuit Test or Full load Cu loss of Transformer   Open circuit test or No load Test of Transformer   Parallel operation of 3-phase Transformer  Earthing or Neutral Grounding Transformer   Transformer on On load Condition   What is a Transformer ?  E.m.f Equation of Transformer   Transformer on No load Condition

Index

SymbolsTransformerRelayPower-SystemBasic-electricalACSR-ConductorCircuit-BreakerInterview-questions-of-Basic-ElectricityInterview-questions-of-transformerInsulatorCurrent-TransformerMCQMCQ-powersystemThermal-power-stationInterview-questions-of-Power-SystemPower-ElectronicsInterview-questions-of-Underground-CableInterview-questions-of-IlluminationIlluminationMCQ-of-ElectronicsMCQ-of-Basic-ElectricalMCQ-of-Transformers MCQ-of-D.C-motor MCQ-of-D.C-generators

Transformer with winding Resistance and Magnetic Leakage

Let us discuss in this topic what will be effect in a transformer due to the presence of resistance & leakage reactance. The resistance of Transformer means the resistance of primary and secondary winding of the transformer. And leakage reactance of Transformer means there is some magnetic leaking in the both of the windings that should be equal to inductive coils connected in both primary & secondary winding which is shown in fig-1.

Fig-1


Where, the R1= Resistance of primary winding,
R2 = Resistance of Secondary winding,
X1= Reactance of primary winding,
X2= Reactance of secondary winding,

Therefore, Primary impedance of transformer is

Z1= √(R12 + X12)

Therefore, Secondary impedance of transformer is

Z2= √(R22 + X22),

Due to the presence of resistance and leakage reactance, some voltage drop will occur in the primary winding.

If, V1 =Applied primary voltage,
E1= Primary induced voltage,

Then, we can write , that

V1 = E1 + I1( R1+jX1)
V1 = E1 + I1Z1,

Similarly, The voltage drop will occur in secondary winding,

If V2 = secondary terminal voltage,
and E2= Secondary induced voltage,
Then, we can write, that
E2=V2 + I2( R2+jX2)
E2 =V2 +I2Z2

Now, we draw the vector diagram below for different kinds of the load is shown in figs.

Fig-2 ( When Load is Non-Inductive)




Fig-3 ( When Load is Inductive)




Fig-4 ( When Load is Capacitive)




In these diagrams, the vector for resistive drops is parallel to current vector whereas reactive drops are perpendicular to the current vectors. The angle φ1 between V1 & I1 is the power factor angle of the transformer. And we can also transfer leakage reactance from one winding to another winding in the same way as resistance transfer.
Therefore, the equivalent secondary reactance as referred to primary

(X2’) = X2/K2 and

The equivalent primary reactance as referred to secondary (X1’)=K2X1,
And The reactance of the transformer as referred to primary

(X01)=X1 +X2’ = X1 + X2/K2,

Similarly, The reactance of the transformer as referred to secondary

(X02)=X2 +X1’ = X2 + X1K2,


Fig-5

Fig-6


We have discussed in the topic of equivalent resistance of transformer,
That, Effective resistance of the transformer as referred to primary of transformer

(R01) = R1 + R2’= R1 +R2/K2.

And Effective resistance of the transformer as referred to secondary of transformer,

R02= R2 + R1’= R2 +R1K2.

Hence, The total impedance of the transformer as referred to primary is given by,

Z01 = √(R01)2 + (X01 )2

And, the total impedance of the transformer as referred to secondary is given by,

Z02 = √(R02)2 + (X02 )2

<< Previous Next >>

Related topics :



Recent Post

Multiple Choice Question (MCQ) of Electronics page-17:
241. Which of the following statement is true? a) The saturation voltage VCF of silicon transistor is more than germanium transistor.
b) The saturation voltage VCE for germanium transistor is more than silicon transistor.
c) The saturation voltage VCE for silicon transistor is same as that for germanium.
d) The saturation voltage VCE for silicon transistor is lower than germanium transistor.

Read more...

Multiple Choice Question (MCQ) of Electronics page-16:
226. Which of the following statement is correct? a) Inner electrons are always present in the semiconductor.
b) Bound electrons are always present in the semiconductor.
c) Free electrons are always present in the semiconductor.
d) Inner and bound electrons are always present in the semiconductor.

Read more...

Multiple Choice Question (MCQ) of Electronics page-15:
211. The materials whose electrical conductivity is usually less than 1 × 106 mho/m are a) Semiconductors
b) Conductors
c) Insulators
d) Alloys

Read more...

Multiple Choice Question (MCQ) of Electronics page-14:
196. In which of the following device the base resistors are not added in the package but added externally? a) UJT
b) CUJT
c) PUT
d) None of the above

Read more...

Multiple Choice Question (MCQ) of Electronics page-13:
181. The conduction in JEFT is always by the a) Majority carriers
b) Minority carriers
c) Holes
d) Electrons
e) Holes and electrons simultaneously

Read more...


Name :   

Comments: